Exact Values of *n*-Widths and Optimal Quadratures on Classes of Bounded Analytic and Harmonic Functions

K. YU. OSIPENKO

Department of Mathematics, Moscow Institute of Aviation Tech, Moscow 103767, Petrovka 27, Russia

Communicated by Allan Pinkus

Received January 21, 1993; accepted in revised form August 17, 1993

In this paper we find some exact values of *n*-widths in the integral metric with the Chebyshev weight function for the classes of functions that are bounded and analytic or harmonic in the interior of the ellipse with foci ± 1 and sum of semiaxes *c*. We also construct optimal quadrature formulas for these classes. (© 1995 Academic Press, Inc.

INTRODUCTION

The Kolmogorov *n*-width of a subset A of a normed linear space X is defined by

$$d_n(A, X) := \inf_{X_n} \sup_{x \in A} \inf_{y \in X_n} ||x - y||,$$

where X_n runs over all *n*-dimensional subspaces of X. If the infimum is attained by some X_n , then X_n is called an optimal subspace for $d_n(A, X)$. We will also study the linear *n*-width defined by

We will also study the linear n-width defined by

$$\lambda_n(A,X) := \inf_{\substack{P_n \ x \in A}} \sup \|x - P_n x\|,$$

where P_n runs over all bounded linear operators mapping X into X whose range has dimension n or less, and the Gel'fand n-width defined by

$$d^{n}(A, X) := \inf_{X^{n}} \sup_{x \in A \cap X^{n}} ||x||,$$

where the infimum is taken over all subspaces X^n of X of codimension n. In the last definition we assume that $0 \in A$. (The usually considered case is when A is a convex and balanced set.) A detailed bibliography and history of the subject can be found in the book of A. Pinkus [1].

156

0021-9045/95 \$12.00 Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved. Let G be a domain in the complex plane. Let $H_{x}(G)$ be the space of bounded analytic functions on G with the norm

$$||f||_{H_{x}(G)} := \sup_{z \in G} |f(z)|.$$

The analogous space of harmonic functions we denote by $h_x(G)$. We shall write H_x and h_x if $G = D := \{z \in \mathbb{C} : |z| < 1\}$. Denote by BX the closed unit ball of the normed space X.

Let $E \subset (-1, 1)$ be a compact set and let L_q (E, μ) be the Lebesgue space with positive measure μ on E and $1 \le q \le \infty$. In Section 1 we obtain the values of the *n*-widths of Bh_x in $L_q(E, \mu)$. We also find the exact value and two different optimal spaces for $d_n(Bh_x(\mathscr{C}_c), C[-1, 1])$, where \mathscr{C}_c is the interior of the ellipse with foci at the points ± 1 and sum cof its semiaxes.

In section 2 we find the exact values of *n*-widths of $BH_x(\mathscr{E}_c)$ and $Bh_x(\mathscr{E}_c)$ in L_q ([-1,1], μ) for $d\mu(x) = dx/\sqrt{1-x^2}$, $1 \le q < \infty$. To obtain this result we solve some minimization problem with Blashke products. The solution of this problem allows us to construct optimal quadrature formulas for the classes $BH_x(\mathscr{E}_c)$ and $Bh_x(\mathscr{E}_c)$ and to improve the results of Refs. [2, 3], where we proved that these formulas are optimal for sufficiently large c.

1. *n*-Widths of Harmonic Functions in h_x

A Blashke product of degree n is a function of the form

$$B(z) = \sigma \prod_{j=1}^{m} \frac{z - \alpha_j}{1 - \overline{\alpha}_j z}, \quad |\alpha_j| < 1, \quad j = 1, \dots, m, \quad |\sigma| = 1.$$

Denote by \mathscr{B}_n the set of all Blashke products of degree *n* or less and by \mathscr{B}_n^0 the ones with $\alpha_j \in (-1, 1)$, $\sigma = \pm 1$. Let *E* be a compact subset of *D* and μ a positive measure on *E* such that $\mu(E) < \infty$. Denote by $L_q := L_q(E, \mu)$ the Lebesgue space of functions on *E* with the usual norm $\|\cdot\|_q$. It was proved by Fisher and Micchelli [4] that

$$d_n(BH_x, L_q) = \lambda_n(BH_x, L_q) = d^n(BH_x, L_q) = \inf_{B \in \mathscr{B}_n} \|B\|_q.$$
(1)

We obtain a similar result for the class Bh_{x} .

THEOREM 1. Let $E \subset (-1, 1)$. Then for all $1 \leq q \leq \infty$

$$d_n(Bh_x, L_q) = \lambda_n(Bh_x, L_q) = d^n(Bh_x, L_q) = (4/\pi) \inf_{B \in \mathscr{B}_n^0} ||\arctan B||_q.$$

Proof. We use the scheme of proof from [4]. Let x_1, \ldots, x_n be any points in (-1, 1) and let B(z) be the Blashke product with the zeros at these points. In [3] an optimal recovery method was obtained for the functional u(x), $u \in Bh_x$, $x \in (-1, 1)$, based on the information $u(x_1), \ldots, u(x_n)$. It was also proved that the error of this method is equal to $(4/\pi)|\arctan B(x)|$. Thus there exist functions $g_1, \ldots, g_n \in C(E)$ such that for all $u \in Bh_x$ and all $x \in (-1, 1)$

$$\left|u(x) - \sum_{j=1}^{n} g_j(x)u(x_j)\right| \leq \frac{4}{\pi} |\arctan B(x)|,$$

where successive derivatives of u at x_j through order r - 1 will appear if some x_j coincide with order r. Hence

$$d_n(Bh_x, L_q) \leq \lambda_n(Bh_x, L_q) \leq \frac{4}{\pi} \inf_{B \in \mathscr{B}_n^0} \|\arctan B\|_q.$$
(2)

To obtain the reverse inequality we use the Borsuk Theorem (see, for example, [1]). Fix points $x_0, \ldots, x_n \in (-1, 1)$. Let $y = (y_0, \ldots, y_n) \in S^n := \{y \in \mathbb{R}^{n+1} : \sum_{j=0}^n y_j^2 = 1\}$. Set

$$\rho(y) := \inf_{\substack{f \in H_x \\ f(x_j) = y_j, j = 0, \dots, n}} \|f\|_{H_x}.$$

According to the classical Pick-Nevanlinna Theorem there is a unique Blashke product $B \in \mathscr{B}_n$ such that

$$\rho(y)B(x_j) = y_j, \qquad j = 0, \dots, n. \tag{3}$$

Since $\overline{B(\bar{z})}$ satisfies the Eqs. (3), it follows that B is real on the real axis. Denote by \mathscr{B}_n^R the set of all Blashke products $B \in \mathscr{B}_n$ which are real on the real axis and by T the mapping

$$(Ty)(z) := \frac{4}{\pi} \arctan B(z),$$

where B satisfies (3). The function

$$w = \frac{4}{\pi} \arctan z$$

is a conformal mapping of D on the strip |Re w| < 1. Therefore Re $Ty \in Bh_x$ for every $y \in S^n$. The continuity of $\rho(y)$ implies that T is a continuous and odd map of S^n into L_q .

continuous and odd map of S^n into L_q . Let $1 < q < \infty$. Suppose that $X_n = \text{span}\{f_1, \dots, f_n\}$ is an *n*-dimensional subspace of L_q . For each $f \in L_q$ let $c_1(f), \dots, c_n(f)$ be the coefficients of f_1, \dots, f_n , respectively, in the best approximation to f from X_n . The mapping $Sf := (c_1(f), \dots, c_n(f))$ is a continuous odd mapping of L_q into \mathbb{R}^n . Thus $S \circ T$ is an odd, continuous map of S^n into \mathbb{R}^n . By the Borsuk Theorem there exists a $y^* \in S^n$ for which $c_j(Ty^*) = 0$, $j = 1, \dots, n$. Hence

$$\sup_{u \in Bh_x} \inf_{v \in X_n} ||u - v||_q \ge \inf_{v \in X_n} ||Ty^* - v||_q = ||Ty^*||_q$$
$$\ge \frac{4}{\pi} \inf_{B \in \mathscr{B}_n^R} ||\arctan B||_q.$$

Since X_n is arbitrary we have

$$d_n(Bh_{x}, L_q) \geq \frac{4}{\pi} \inf_{B \in \mathscr{B}_n^R} \|\arctan B\|_q.$$

For every $\alpha + i\beta \in D$ and $x \in (-1, 1)$

$$\left|\frac{x-\alpha-i\beta}{1-(\alpha-i\beta)x}\right| \ge \left|\frac{x-\alpha}{1-\alpha x}\right|.$$
 (4)

Thus

$$d_n(Bh_{x}, L_q) \geq \frac{4}{\pi} \inf_{B \in \mathscr{B}_n^0} \|\arctan B\|_q.$$

The cases $q = 1, \infty$ are established by passing to the limit as either q > 1 or $q \nearrow \infty$.

Now consider the case of d^n . Let X^n be any subspace of L_q of codimension n. Thus

$$X^n = \left\{ u \in L_q : \langle f'_i, u \rangle = 0, j = 1, \dots, n \right\}$$

for some linearly independent and continuous functionals f'_i on L_q .

Denote by $T': S^n \to \mathbb{R}^n$ the mapping

$$T'y := \left(\langle f'_1, Ty \rangle, \ldots, \langle f'_n, Ty \rangle \right).$$

T' is an odd and continuous map. By the Borsuk Theorem there exists a $y^* \in S^n$ for which $T'y^* = 0$. Since $Ty^* \in Bh_{\infty}$ we have

$$\sup_{\substack{u \in Bh_{x} \\ \langle f'_{j}, u \rangle = 0, j = 1, \dots, n}} \|u\|_{q} \ge \|Ty^{*}\|_{q} \ge \frac{4}{\pi} \inf_{B \in \mathscr{B}_{n}^{R}} \|\arctan B\|_{q}$$
$$= \frac{4}{\pi} \inf_{B \in \mathscr{B}_{n}^{0}} \|\arctan B\|_{q}.$$

As X_n is arbitrary we find

$$d^{n}(Bh_{x}, L_{q}) \geq \frac{4}{\pi} \inf_{B \in \mathscr{B}_{n}^{0}} \|\arctan B\|_{q}.$$

The reverse inequality follows from the well-known inequality (see, for example, [1])

$$\lambda_n(A,X) \ge d^n(A,X)$$

and (2). The theorem is proved.

We shall use the standard notation for the Jacobi elliptic function w = sn(z, k), which is defined from the equation

$$z = \int_0^w \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} \, .$$

Besides that we shall deal with the elliptic functions

$$cn(z,k) := \sqrt{1 - sn^2(z,k)}, \quad dn(z,k) := \sqrt{1 - k^2 sn^2(z,k)}$$

(cn(0, k) = dn(0, k) = 1) and complete elliptic integrals of the first kind with moduli k and $k' = \sqrt{1 - k^2}$,

$$K := \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}, \qquad K' := \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k'^2t^2)}}.$$

From [5] it follows that for every $k \in (0, 1)$

$$\inf_{B \in \mathscr{B}_n} \sup_{x \in [-\sqrt{k}, \sqrt{k}]} |B(x)| = \sup_{x \in [-\sqrt{k}, \sqrt{k}]} |Z_n(x)|$$
$$= 2h^{n/4} \frac{\sum_{m=0}^{\infty} h^{nm(m+1)}}{1 + 2\sum_{m=1}^{\infty} h^{nm^2}},$$

where $h = e^{-\pi K'/K}$,

$$Z_n(z) := \prod_{j=1}^n \frac{z - z_j^0}{1 - z_j^0 z},$$
$$z_j^0 := \sqrt{k} \operatorname{sn}\left[\left(\frac{2j - 1}{n} - 1\right) K, k\right], \quad j = 1, \dots, n.$$

As the function $\arctan x$ is monotone we have from Theorem 1

$$d_{n}(Bh_{x}, C[-\sqrt{k}, \sqrt{k}]) = \lambda_{n}(Bh_{x}, C[-\sqrt{k}, \sqrt{k}])$$
$$= d^{n}(Bh_{x}, C[-\sqrt{k}, \sqrt{k}])$$
$$= \frac{4}{\pi} \arctan\left[2h^{n/4} \frac{\sum_{m=0}^{\infty} h^{nm(m+1)}}{1+2\sum_{m=1}^{\infty} h^{nm^{2}}}\right]. \quad (5)$$

To rewrite the right hand side of (5) we need the following lemma.

LEMMA 1. For all $h \in (0, 1)$

$$\frac{4}{\pi}\arctan\left[2h\frac{\sum\limits_{m=0}^{\infty}h^{4m(m+1)}}{1+2\sum\limits_{m=1}^{\infty}h^{4m^2}}\right] = \frac{8}{\pi}\sum\limits_{m=0}^{\infty}\frac{(-1)^m}{2m+1}\frac{h^{2m+1}}{1+h^{2(2m+1)}}.$$

Proof. Determine k by the equation

$$e^{-\pi K'/K} = h.$$

Then for real x (see [6])

$$\mathrm{dn}\left(\frac{Kx}{\pi},k\right)=\frac{\pi}{2K}+\frac{2\pi}{K}\sum_{m=1}^{\infty}\frac{h^m}{1+h^{2m}}\mathrm{cos}\ mx.$$

Hence

$$\frac{4K}{\pi^2} \int_0^{\pi/2} \mathrm{dn}\left(\frac{Kx}{\pi}, k\right) dx = 1 + \frac{8}{\pi} \sum_{m=0}^\infty \frac{\left(-1\right)^m}{2m+1} \frac{h^{2m+1}}{1+h^{2(2m+1)}}.$$
 (6)

It is easy to obtain that

$$\int dn(t,k) dt = \arctan \frac{sn(t,k)}{cn(t,k)} + C$$

Using the well-known equations from the theory of elliptic functions (see, for example, [6])

$$\operatorname{sn}(K/2,k) = \frac{1}{\sqrt{1+k'}}, \quad \operatorname{cn}(K/2,k) = \frac{\sqrt{k'}}{\sqrt{1+k'}},$$
$$\sqrt{k'} = \frac{1+2\sum_{m=1}^{\infty}(-1)^m h^{m^2}}{1+2\sum_{m=1}^{\infty}h^{m^2}},$$

we have by (6)

$$\frac{8}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^m}{2m+1} \frac{h^{2m+1}}{1+h^{2(2m+1)}}$$

$$= \frac{4}{\pi} \int_0^{K/2} \operatorname{dn}(t,k) \, dt - 1$$

$$= \frac{4}{\pi} \arctan \frac{\operatorname{sn}(x,k)}{\operatorname{cn}(x,k)} \Big|_0^{K/2} - 1 = \frac{4}{\pi} \left(\arctan \frac{1}{\sqrt{k'}} - \arctan 1 \right)$$

$$= \frac{4}{\pi} \arctan \frac{1-\sqrt{k'}}{1+\sqrt{k'}} = \frac{4}{\pi} \arctan \left[2h \frac{\sum_{m=0}^{\infty} h^{4m(m+1)}}{1+2\sum_{m=1}^{\infty} h^{4m^2}} \right].$$

162

The function

$$\phi(w) \coloneqq \sqrt{k} \operatorname{sn}\left(\frac{2K}{\pi} \operatorname{arcsin} w, k\right)$$
(7)

maps \mathscr{E}_c conformally on the unit disk D, and carries the interval [-1, 1] to the interval $[-\sqrt{k}, \sqrt{k}]$, where k satisfies

$$\frac{K'}{K} = \frac{4}{\pi} \log c. \tag{8}$$

Note that the map ϕ carries the Chebyshev points

$$x_j^0 = \cos \frac{2j-1}{2n} \pi, \qquad j = 1, \dots, n,$$
 (9)

to z_j^0 . We obtain the following corollary by using this map, (5) and Lemma 1.

COROLLARY 1. For all c > 1

$$d_n(Bh_x(\mathscr{E}_c), C[-1, 1]) = \lambda_n(Bh_x(\mathscr{E}_c), C[-1, 1])$$

= $d^n(Bh_x(\mathscr{E}_c), C[-1, 1])$
= $\frac{8}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^m}{2m+1} \frac{c^{-(2m+1)n}}{1+c^{-2(2m+1)n}}.$

Denote by $A_0(\mathscr{E}_c)$ the class of functions f which are analytic in \mathscr{E}_c , real on the real axis and satisfy

$$|\operatorname{Re} f(z)| \leq 1, \quad z \in \mathscr{E}_c.$$

It was proved by N. I. Akhiezer [7] that

$$E_{n}(\mathcal{A}_{0}(\mathscr{E}_{c})) := \sup_{f \in \mathcal{A}_{0}(\mathscr{E}_{c})} \inf_{p \in \mathscr{P}_{n-1}} ||f-p||_{C[-1,1]}$$
$$= \frac{8}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{2m+1} \frac{c^{-(2m+1)n}}{1+c^{-2(2m+1)n}},$$
(10)

where \mathcal{P}_{n-1} is the set of all polynomials of degree n-1 or less.

It is easy to show that the restrictions on the real axis of $A_0(\mathscr{E}_c)$ and $Bh_x(\mathscr{E}_c)$ coincide. Thus Eq. (10) is valid for $Bh_x(\mathscr{E}_c)$ and the space \mathscr{P}_{n-1} is optimal subspace for $d_n(Bh_x(\mathscr{E}_c), C[-1, 1])$. By proving Theorem 1 we see

640/82/1-12

that the space

$$X_n := \operatorname{span}\{g_1(\phi(w)), \ldots, g_n(\phi(w))\},\$$

where the functions g_1, \ldots, g_n are determined by the points z_j^0 , is also an optimal subspace. Akhiezer's result was brought to the author's attention by to V. M. Tikhomirov. He also conjectured that there is a sequence of optimal subspaces, like in the case of smooth functions (see [8]).

2. Exact Values of *n*-Widths in L_q and Optimal Quadrature Formulas

We first formulate a generalization of one result obtained by A. Pinkus [9] (see also [1, p. 174]). Let h(t) be a piecewise continuous, 2π -periodic function. Denote by $S_c(h)$ the number of sign changes of h. For a real, continuous, 2π -periodic function k set

$$(k*h)(x) := \frac{1}{2\pi} \int_0^{2\pi} k(x-t)h(t) dt.$$

The kernel k is nondegenerate cyclic variation diminishing (NCVD) if $S_c(k * h) \le S_c(h)$ for all h, and

$$\dim \operatorname{span}\{k(x_1 - \cdot), \dots, k(x_n - \cdot)\} = n$$

for every choice of $0 \le x_1 < \cdots < x_n < 2\pi$ and all *n*. The kernel k is said to be strictly sign consistent of order 2l + 1 (SSC_{2l+1}) if

$$\sigma \det(k(x_j - y_m))_{j, m=1}^{2l+1} > 0$$

whenever $0 \le x_1 < \cdots < x_{2l+1} < 2\pi$, $0 \le y_1 < \cdots < y_{2l+1} < 2\pi$, and $\sigma = 1$ or -1.

Set

$$\Lambda_{2m} := \{ \xi \colon \xi = (\xi_1, \dots, \xi_{2m}), 0 \le \xi_1 \le \dots \le \xi_{2m} < 2\pi \}.$$

For each $\xi \in \Lambda_{2m}$ we define

$$h_{\xi}(t) := (-1)^{j}, \quad t \in [\xi_{j-1}, \xi_{j}], \quad j = 1, \dots, 2m + 1,$$

where $\xi_0 := 0$, $\xi_{2m+1} := 2\pi$. Denote by $h_m(t)$ the function h_{ξ} for $\xi_j = (j-1)\pi/m$, j = 1, ..., 2m.

THEOREM 2. Let k be an NCVD kernel and φ a nonnegative function defined on [0, C], where

$$C \coloneqq \frac{1}{2\pi} \int_0^{2\pi} |k(t)| dt.$$

Suppose that φ' is an nonnegative, continuous, and strictly increasing function. Then

$$\inf_{\xi \in \Lambda_{2n}} \int_0^{2\pi} \varphi \left(\left| \left(k * h_{\xi} \right) (t) \right| \right) dt = \int_0^{2\pi} \varphi \left(\left| \left(k * h_n \right) (t) \right| \right) dt \right|$$

Furthermore, if k is SSC_{2l+1} , l = 0, 1, ..., n, and the infimum is attained by $\xi^* \epsilon \Lambda_{2n}$, then $\xi_{i+1}^* - \xi_i^* = \pi/n$, j = 1, ..., 2n - 1.

This theorem was proved by A. Pinkus for $\varphi(x) = x^q$, $1 \le q < \infty$. The general case is proven in a similar way. To count sign changes we only need to use the equation

$$\operatorname{sign} (a + b) = \operatorname{sign}(\varphi'(|a|)\operatorname{sign} a + \varphi'(|b|)\operatorname{sign} b)$$

instead of

$$sign(a + b) = sign(|a|^{q-1}sign a + |b|^{q-1}sign b), \quad 1 < q < \infty.$$

Set $D_H := \{z \in \mathbb{C} : |\text{Im } z| < H\}$. Denote by A_H the class of all functions analytic in D_H , real and 2π -periodic on the real axis which satisfy

$$|\operatorname{Re} f(z)| \le 1, \quad z \in D_H.$$

Each function $f \in A_H$ has the representation

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} K_H(z-t) \operatorname{Re} f(t+iH) dt,$$

where

$$K_H(z) = 1 + 2\sum_{j=1}^{\infty} \frac{\cos jz}{\cos jH}$$

and K_H is NCVD on $[0, 2\pi)$ (see [1]). Moreover, it was proved by W. Forst [10] that K_H is SSC_{2l+1} for all l = 0, 1, ...

By Theorem 2 with $k = K_{H}$ we solve some extremal problems which allow us to obtain exact values of *n*-widths and to construct optimal quadratures for $BH_{x}(\mathscr{E}_{c})$ and $Bh_{x}(\mathscr{E}_{c})$. For $k \in (0, 1)$ set

$$d\nu_k(z) := \frac{\pi}{2K} \frac{dz}{\sqrt{(k-z^2)(1-kz^2)}}.$$

THEOREM 3. Let φ be a function defined on [0, 1] which satisfies the assumptions of Theorem 2. Then for all $k \in (0, 1)$

$$\inf_{B\in\mathscr{B}_{n}^{0}}\int_{-\sqrt{k}}^{\sqrt{k}}\varphi\left(\frac{4}{\pi}\arctan|B(z)|\right)d\nu_{k}(z) = \frac{\pi}{\Lambda}\int_{0}^{1}\frac{\varphi\left(\frac{4}{\pi}\arctan(\sqrt{\lambda}t)\right)dt}{\sqrt{(1-t^{2})(1-\lambda^{2}t^{2})}},$$
(11)

where

$$\lambda = 4h^{n/2} \left(\frac{\sum_{m=0}^{\infty} h^{nm(m+1)}}{1 + 2\sum_{m=1}^{\infty} h^{nm^2}} \right)^2, \qquad h = e^{-\pi K'/K}, \tag{12}$$

and Λ is the complete elliptic integral of the first kind with modulus λ . Moreover, the functions $\pm Z_n$ are the only functions for which the infimum is attained.

Proof. Let $B \in \mathscr{B}_n^0$. Set

$$f(t) := \frac{4}{\pi} \arctan B\left(\sqrt{k} \operatorname{sn}\left(\frac{2K}{\pi}t, k\right)\right).$$

From the properties of the elliptic function sn(x, k) it follows that $f \in A_H$, where $H = \pi K'/(4K)$. For $z = e^{i\theta}$ we have

$$\operatorname{Re}B(z) = \sigma \operatorname{Re}\prod_{j=1}^{n} \frac{z - x_{j}}{1 - x_{j}z} = \sigma \prod_{j=1}^{n} \frac{1}{|1 - x_{j}z|^{2}} \operatorname{Re}\prod_{j=1}^{n} \frac{(z - x_{j})^{2}}{z}$$
$$= \sigma \prod_{j=1}^{n} \frac{1}{|1 - x_{j}z|^{2}} \sum_{j=0}^{n} c_{j} \cos j\theta,$$

where $c_i \in \mathbb{R}$, $\sigma = 1$ or -1. Thus the function Re $B(e^{i\theta})$ has at most 2n

zeros in $(0, 2\pi)$. As t runs from 0 to 2π the point

$$z = \sqrt{k} \operatorname{sn}\left(\frac{2K}{\pi}(t+iH), k\right)$$

makes one rotation around the unit circle. Since for all |z| = 1 and $z \neq \pm i$

$$\operatorname{Re}\left(\frac{4}{\pi}\arctan z\right) = \operatorname{sign}\operatorname{Re} z,$$

we have for almost all $t \in [0, 2\pi]$

Re
$$f(t + iH)$$
 = sign Re $B\left(\sqrt{k}\operatorname{sn}\left(\frac{2K}{\pi}(t + iH), k\right)\right)$. (13)

Consequently there exists a $\xi \in A_{2n}$ for which

$$|f(t)| = |(K_H * h_{\xi})(t)|.$$

By using the first fundamental transformation of degree n (see [6]) we can find

$$Z_n\left(\sqrt{k}\operatorname{sn}\left(\frac{2K}{\pi}t,k\right)\right) = \begin{cases} \left(-1\right)^m \sqrt{\lambda} \operatorname{sn}\left(\frac{2nA}{\pi}t+A,\lambda\right), & n=2m, \\ \left(-1\right)^m \sqrt{\lambda} \operatorname{sn}\left(\frac{2nA}{\pi}t,\lambda\right), & n=2m+1, \end{cases}$$

where λ is determined by the equation

$$\frac{A'}{A} = n\frac{K'}{K}$$

(A' is the complete elliptic integral of the first kind with modulus $\lambda' = \sqrt{1 - \lambda^2}$). From the standard equation

$$\sqrt{\lambda} = 2h_1^{1/4} \frac{\sum_{m=0}^{\infty} h_1^{m(m+1)}}{1 + 2\sum_{m=1}^{\infty} h_1^{m^2}}, \qquad h_1 = e^{-\pi A'/A},$$

in the theory of elliptic functions, we obtain (12). Set

$$f_n(t) := \frac{4}{\pi} \arctan\left[Z_n\left(\sqrt{k} \operatorname{sn}\left(\frac{2K}{\pi}t, k\right)\right)\right].$$

Let n = 2m + 1. Then from the equation

Re sn(w + i
$$\Lambda'/2$$
, λ) = $\frac{(1 + \lambda) \operatorname{sn}(w, \lambda)}{1 + \lambda^2 \operatorname{sn}^2(w, \lambda)}$,

and (13) it follows

Re
$$f_n(t + iH) = (-1)^m \operatorname{sign} \operatorname{sn}\left(\frac{2n\Lambda}{\pi}t,\lambda\right).$$

Hence

$$f_n(t) = (-1)^m (K_H * h_n)(t).$$

It can be proved similarly that for n = 2m

$$f_n(t) = (-1)^m (K_H * h_n) \left(t + \frac{\pi}{2n} \right).$$

Thus

$$(K_H * h_n)(t) = \frac{4}{\pi} \arctan\left[\sqrt{\lambda} \operatorname{sn}\left(\frac{2n\Lambda}{\pi}t,\lambda\right)\right].$$
(14)

Now from Theorem 2 we have

$$\inf_{B \in \mathscr{B}_n^0} \int_0^{2\pi} \varphi \left(\frac{4}{\pi} \arctan \left| B \left(\sqrt{k} \operatorname{sn} \left(\frac{2K}{\pi} t, k \right) \right) \right| \right) dt$$

$$\geq \inf_{\xi \in A_{2n}} \int_0^{2\pi} \varphi \left(\left| \left(K_H * h_{\xi} \right) (t) \right| \right) dt = \int_0^{2\pi} \varphi \left(\left| \left(K_H * h_n \right) (t) \right| \right) dt$$

$$= \int_0^{2\pi} \varphi \left(\left| f_n(t) \right| \right) dt.$$

In view of the equation sn(2K - w, k) = sn(w, k) we will have

$$\inf_{B \in \mathscr{B}_{n}^{0}} \int_{-\pi/2}^{\pi/2} \varphi \left(\frac{4}{\pi} \arctan \left| B \left(\sqrt{k} \operatorname{sn} \left(\frac{2K}{\pi} t, k \right) \right) \right| \right) dt$$
$$= \int_{-\pi/2}^{\pi/2} \varphi \left(\left| \left(K_{H} * h_{n} \right) (t) \right| \right) dt$$
$$= \frac{\pi}{\Lambda} \int_{0}^{\Lambda} \varphi \left(\frac{4}{\pi} \arctan \left(\sqrt{\lambda} \operatorname{sn} (z, \lambda) \right) \right) dz.$$

Making the change of variables

$$z = \sqrt{k} \operatorname{sn}\left(\frac{2K}{\pi}t, k\right), \tag{15}$$

in the first integral and $t = sn(z, \lambda)$ in the last one, we obtain (11).

If the infimum in (11) is attained by any $B^* \in \mathscr{B}_n^0$ then from Theorem 2 there exists an $\alpha \in [0, \pi/n)$ and $\sigma = 1$ or -1 for which

$$\frac{4}{\pi}\arctan B^*\left(\sqrt{k}\operatorname{sn}\left(\frac{2K}{\pi}t,k\right)\right) = \sigma(K_H * h_n)(t+\alpha)$$
$$= \sigma \frac{4}{\pi}\arctan\left[\sqrt{\lambda}\operatorname{sn}\left(\frac{2nA}{\pi}(t+\alpha),\lambda\right)\right].$$

Thus

$$B^*\left(\sqrt{k}\operatorname{sn}\left(\frac{2K}{\pi}t,k\right)\right) = \sigma\sqrt{\lambda}\operatorname{sn}\left(\frac{2n\Lambda}{\pi}(t+\alpha),\lambda\right).$$

In view of the formula for $sn(u + w, \lambda)$ we have

$$B^{*}\left(\sqrt{k}\operatorname{sn}\left(\frac{2K}{\pi}t,k\right)\right) = \frac{a\operatorname{sn}\left(\frac{2n\Lambda}{\pi}t,\lambda\right) + b\operatorname{cn}\left(\frac{2n\Lambda}{\pi}t,\lambda\right)\operatorname{dn}\left(\frac{2n\Lambda}{\pi}t,\lambda\right)}{1 - c\operatorname{sn}^{2}\left(\frac{2n\Lambda}{\pi}t,\lambda\right)}, \quad (16)$$

where

$$b = \sigma \sqrt{\lambda} \operatorname{sn} \left(\frac{2nA}{\pi} \alpha, \lambda \right)$$

(the numbers a and c are irrelevant). Let n = 2m + 1. If we make the change of variable (15), the left hand side of (16) and sn $((2nA/\pi)t, \lambda)$ become rational functions. On the other hand, it is not difficult to show that

$$\operatorname{cn}\left(\frac{2n\Lambda}{\pi}t,\lambda\right)\operatorname{dn}\left(\frac{2n\Lambda}{\pi}t,\lambda\right)$$

is not a rational function (as a function of z). Therefore b = 0 and consequently $\alpha = 0$. This means that $B^* = Z_n$ or $-Z_n$. The case n = 2m can be considered similarly. The theorem is proved.

Set

$$\begin{split} I_{q0}(\lambda) &:= \int_{0}^{1} \frac{t^{q} dt}{\sqrt{(1 - t^{2})(1 - \lambda^{2}t^{2})}} \,, \\ I_{q1}(\lambda) &:= \int_{0}^{1} \frac{\arctan^{q}(\sqrt{\lambda}t) dt}{\sqrt{(1 - t^{2})(1 - \lambda^{2}t^{2})}} \,, \\ I_{q2}(\lambda) &:= \int_{0}^{1} \frac{\arctan(\sqrt{\lambda}t)^{q} dt}{\sqrt{(1 - t^{2})(1 - \lambda^{2}t^{2})}} \,. \end{split}$$

Considering in Theorem 3 the functions

$$\tan^{q}\frac{\pi}{4}x, \qquad \left(\frac{\pi}{4}x\right)^{q}, \qquad \arctan\left(\tan^{q}\frac{\pi}{4}x\right), \qquad 1 \leq q < \infty,$$

as φ , we have

COROLLARY 2. For all $k \in (0, 1)$ and $1 \le q < \infty$ $\inf_{B \in \mathscr{B}_n^0} \int_{-\sqrt{k}}^{\sqrt{k}} |B(z)|^q d\nu_k(z) = \frac{\pi}{\Lambda} \lambda^{q/2} I_{q0}(\lambda),$ $\inf_{B \in \mathscr{B}_n^0} \int_{-\sqrt{k}}^{\sqrt{k}} \arctan^q |B(z)| d\nu_k(z) = \frac{\pi}{\Lambda} I_{q1}(\lambda),$ $\inf_{B \in \mathscr{B}_n^0} \int_{-\sqrt{k}}^{\sqrt{k}} \arctan |B(z)|^q d\nu_k(z) = \frac{\pi}{\Lambda} I_{q2}(\lambda).$

Furthermore, in every case the infimum is attained only by $\pm Z_n$.

170

Now we can prove the following result.

THEOREM 4. Let $L_q := L_q([-1,1], \mu)$, $d\mu(x) = dx/\sqrt{1-x^2}$. For all $1 \le q < \infty$ and c > 1

$$d_n(BH_x(\mathscr{E}_c), L_q) = \lambda_n(BH_x(\mathscr{E}_c), L_q) = d^n(BH_x(\mathscr{E}_c), L_q)$$
$$= \sqrt{\lambda} \left(\frac{\pi}{A} I_{q0}(\lambda)\right)^{1/q} = 2 \left(\sqrt{\pi} \frac{\Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{q}{2}+1\right)}\right)^{1/q} c^{-n} + O(c^{-5n}),$$
$$d_n(Bh_x(\mathscr{E}_c), L_q)$$

$$= \lambda_n \left(Bh_{x}(\mathscr{E}_c), L_q \right) = d^n \left(Bh_{x}(\mathscr{E}_c), L_q \right)$$
$$= \frac{4}{\pi} \left(\frac{\pi}{\Lambda} I_{q1}(\lambda) \right)^{1/q} = \frac{8}{\pi} \left(\sqrt{\pi} \frac{\Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{q}{2}+1\right)} \right)^{1/q} c^{-n} + O(c^{-5n}),$$

where Λ is the complete elliptic integral of the first kind with modulus

$$\lambda = 4c^{-2n} \left[\frac{\sum_{m=0}^{\infty} c^{-4nm(m+1)}}{1 + 2\sum_{m=1}^{\infty} c^{-4nm^2}} \right]^2.$$
 (17)

Proof. Let $z = \phi(w)$ be a conformal mapping of \mathscr{E}_c on the unit disk D determined by (7). It is easy to show that

$$d\nu_k(z)=\frac{dw}{\sqrt{1-w^2}}.$$

Therefore by the mapping ϕ , the original problem reduces to one of finding the exact values of the *n*-widths of BH_x and Bh_x in $L_q([-\sqrt{k}, \sqrt{k}], \nu_k)$. From (1) we have

$$d_n(BH_z, L_q([-\sqrt{k}, \sqrt{k}], \nu_k)) = \inf_{B \in \mathscr{B}_n} \left(\int_{-\sqrt{k}}^{\sqrt{k}} |B(z)|^q d\nu_k(z) \right)^{1/q}.$$

It follows from (4) that we can change \mathscr{B}_n by \mathscr{B}_n^0 in the last equation. Thus by Corollary 2

$$d_n(BH_{x}(\mathscr{C}_c), L_q) = \sqrt{\lambda} \left(\frac{\pi}{\Lambda} I_{q0}(\lambda)\right)^{1/q}.$$

For the class $Bh_{x}(\mathscr{C}_{c})$ from Theorem 1 and Corollary 2 we obtain

$$d_n(Bh_{\infty}(\mathscr{E}_c), L_q) = \frac{4}{\pi} \inf_{B \in \mathscr{B}_n^0} \left(\int_{-\sqrt{k}}^{\sqrt{k}} \arctan^q |B(z)| d\nu_k(z) \right)^{1/q}$$
$$= \frac{4}{\pi} \left(\frac{\pi}{\Lambda} I_{q1}(\lambda) \right)^{1/q}.$$

The asymptotic equations follow from (17) and the well-known equations

$$\int_0^1 x^q (1-x^2)^{-1/2} dx = \frac{\sqrt{\pi}}{2} \frac{\Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{q}{2}+1\right)},$$
$$A = \frac{\pi}{2} \left(1+2\sum_{m=1}^\infty h^{m^2}\right)^2, \qquad h = e^{-\frac{\pi A'}{\Lambda}} = c^{-4n}$$

The theorem is proved.

The *n*-widths of periodic functions, which are represented as a convolution with some kernel $k \in NCVD$, was studied by A. Pinkus [9] (see also [1]). In particular, it follows from [9], that for all $1 \le q \le \infty$

$$d_{2n}(A_H, L_q) = \lambda_{2n}(A_H, L_q) = d^{2n}(A_H, L_q) = ||K_H * h_n||_q, \quad (18)$$

where $\|\cdot\|_q$ is the usual norm in the space $L_q := L_q[0, 2\pi]$. Since the function $K_h * h_n$ is found in direct form (see (14)) we can calculate the exact values of these *n*-widths.

THEOREM 5. For all $1 \le q < \infty$

$$d_{2n}(A_H, L_q) = \lambda_{2n}(A_H, L_q) = d^{2n}(A_H, L_q) = \frac{4}{\pi} \left(\frac{2\pi}{\Lambda} I_{q1}(\lambda)\right)^{1/q}$$
$$= \frac{8}{\pi} \left(2\sqrt{\pi} \frac{\Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{q}{2}+1\right)}\right)^{1/q} e^{-Hn} + O(e^{-5Hn}),$$

where

$$\lambda = 4e^{-2Hn} \left[\frac{\sum_{m=0}^{\infty} e^{-4Hnm(m+1)}}{1+2\sum_{m=1}^{\infty} e^{-4Hnm^2}} \right]^2.$$

For $q = \infty$ we have from (14) and (18)

$$d_{2n}(A_H, L_x) = \lambda_{2n}(A_H, L_x) = d^{2n}(A_H, L_x) = \frac{4}{\pi} \arctan \sqrt{\lambda}.$$

Now from Lemma 1 and (17)

$$d_{2n}(A_H, L_x) = \lambda_{2n}(A_H, L_x) = d^{2n}(A_H, L_x)$$

= $\frac{4}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^m}{2m+1} \frac{1}{\cosh[(2m+1)Hn]}$.

These equations were previously calculated by V. M. Tikhomirov [11] (the complete proof was given by W. Forst [10]).

Let us consider some applications of Theorem 3 to optimal quadrature formulas. We are interested in the problem of approximate calculation of the integral

$$If := \int_{-1}^{1} f(x) \frac{dx}{\sqrt{1-x^{2}}},$$

where $f \in W = BH_x(\mathscr{C}_c)$ or $Bh_x(\mathscr{C}_c)$, in terms of the values of f and its derivatives at a system of knots. Denote by

$$\tau_{\alpha} := \begin{pmatrix} x_1, \ldots, x_n \\ \alpha_1, \ldots, \alpha_n \end{pmatrix},$$

a system of distinct knots $x_1, \ldots, x_n \in [-1, 1]$ with multiplicities $\alpha_1, \ldots, \alpha_n$.

The error of the best quadrature formula for a given system τ_{α} is the number

$$e(\tau_{\alpha},W) := \inf_{a_{jm}} \sup_{f \in W} \left| If - \sum_{j=1}^{n} \sum_{m=0}^{\alpha_{j}} a_{jm} f^{(m)}(x_{j}) \right|.$$

If $f \in Bh_x(\mathscr{E}_c)$ we mean by $f^{(m)}$ the partial derivative $\partial^m f / \partial x^m$. A

quadrature formula is said to be best for a given system τ_{α} if it realizes the infimum.

Set

$$e(\alpha, W) := \inf_{-1 \leq x_1 < \cdots < x_n \leq 1} e(\tau_\alpha, W).$$

If the infimum is attained at the points $-1 \le x_1^0 < \cdots < x_n^0 \le 1$, then the best quadrature formula for this system of points, with multiplicities $\alpha = (\alpha_1, \ldots, \alpha_n)$, is said to be optimal for the given α . The points x_1^0, \ldots, x_n^0 are also called optimal.

It was proved in [2, 3] that

$$e(\alpha, BH_{x}(\mathscr{E}_{c})) = \inf_{-\sqrt{k} < z_{1} < \cdots < z_{n} < \sqrt{k}} \int_{-\sqrt{k}}^{\sqrt{k}} |B(z)| d\nu_{k}(z),$$
$$e(\alpha, Bh_{x}(\mathscr{E}_{c})) = \frac{4}{\pi} \inf_{-\sqrt{k} < z_{1} < \cdots < z_{n} < \sqrt{k}} \int_{-\sqrt{k}}^{\sqrt{k}} \arctan|B(z)| d\nu_{k}(z),$$

where

$$B(z) := \prod_{j=1}^{n} \left(\frac{z - z_j}{1 - z_j z} \right)^{\mu_j}, \qquad \mu_j := 2 [(\alpha_j + 1)/2]$$

(here the brackets denote the integral part) and k is determined by (8). Using Corollary 2 and the results of [2, 3] we obtain the following theorem.

THEOREM 6. Let q be an even positive integer. Then for all c > 1:

(i) for all
$$q - 1 \le \alpha_j \le q$$

 $e(\alpha, BH_{\alpha}(\mathscr{E}_c)) = \frac{\pi}{\Lambda} \lambda^{q/2} I_{q0}(\lambda) = 2^{q/2} \pi \frac{(q-1)!!}{(q/2)!} c^{-qn} + O(c^{-(q+4)n}),$
 $e(\alpha, Bh_{\alpha}(\mathscr{E}_c)) = \frac{4}{\Lambda} I_{q2}(\lambda) = 2^{q/2+2} \frac{(q-1)!!}{(q/2)!} c^{-qn} + O(c^{-(q+4)n}),$

where λ is determined by (17), and the unique system of optimal knots is the Chebyshev system (9);

(ii) for $\alpha_i \leq 2$ the quadrature formulas

$$\int_{-1}^{1} f(x) \frac{dx}{\sqrt{1-x^2}} \approx \pi \frac{1-\Delta_n(c)}{n} \sum_{j=1}^{n} f\left(\cos \frac{2j-1}{2n} \pi\right),$$

$$\int_{-1}^{1} f(x) \frac{dx}{\sqrt{1-x^2}} \approx \pi \frac{1-\delta_n(c)}{n} \sum_{j=1}^{n} f\left(\cos \frac{2j-1}{2n} \pi\right),$$

$$\Delta_n(c) := \frac{\lambda^2}{\Lambda} I_{40}(\lambda) = 6c^{-4n} + O(c^{-8n}),$$

$$\delta_n(c) := 2\frac{\lambda^2}{\Lambda} \int_0^1 \frac{t^4 dt}{(1 + \lambda^2 t^4)\sqrt{(1 - t^2)(1 - \lambda^2 t^2)}} = 12c^{-4n} + O(c^{-8n}),$$

are optimal for the classes $BH_x(\mathscr{E}_c)$ and $Bh_x(\mathscr{E}_c)$, respectively.

REFERENCES

- 1. A. PINKUS, "n-Widths in Approximation Theory," Springer-Verlag, Berlin, 1985.
- K. YU. OSIPENKO, On best and optimal quadrature formulas on classes of bounded analytic functions, *Izv. Akad. Nauk SSSR Ser. Mat.* 52, No. 1 (1988), 79-99; English translation *Math. USSR-Izv.* 32 (1989), 77-97.
- 3. K. YU. OSIPENKO, Best and optimal recovery methods for classes of harmonic functions, *Mat. Sb.* 182, No. 5 (1991), 723-745; English translation *Math. USSR-Sb.* 73 (1992), 111-133.
- 4. S. D. FISHER AND C. A. MICCHELLI, The *n*-width of sets of analytic functions, *Duke Math.* 47, No. 4 (1980), 789-801.
- 5. K. YU. OSIPENKO, Optimal interpolation of analytic functions, Mat. Zametki 12, No. 4 (1972), 465-476; English translation Math. Notes 12(1972), 712-719.
- 6. N. I. AKHIEZER, "Elements of the Theory of Elliptic Functions," Nauka, Moscow, 1970.
- 7. N. I. AKHIEZER, "Lectures on the Theory of Approximation," Nauka, Moscow, 1965.
- 8. A. A. LIGUN, Inequalities for upper bounds of functionals, Anal. Math. 2, No. 1 (1976), 11-40.
- 9. A. PINKUS, On n-widths of periodic functions, J. Analyse Math. 35 (1979), 209-235.
- 10. W. FORST, Uber die Brite von Klassen holomorpher periodisher Funktionen, J. Approx. Theory 19 (1977), 325-331.
- 11. V. M. TIKHOMIROV, Diameters of sets in function spaces and the theory of best approximations, Uspekhi Mat. Nauk 15 (1960), 81-120; English translation Russian Math. Surveys 15 (1960), 75-111.

Printed in Belgium Uitgever: Academic Press, Inc. Verantwoordelijke uitgever voor België. Hubert Van Maele Altenastraat 20, B-8310 Sint-Kruis