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In this paper we find some exact values of n-widths in the integral metric with
the Chebyshev weight function for the classes of functions that are bounded and
analytic or harmonic in the interior of the ellipse with foci ± 1 and sum of semiaxes
c. We also construct optimal quadrature formulas for these classes.
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INTRODUCTION

The Kolmogorov n-width of a subset A of a normed linear space X is
defined by

dA A, X) := inf sup inf Ilx - yll,
X n XEA yEX n

where X n runs over all n-dimensional subspaces of X. If the infimum is
attained by some X n, then X n is called an optimal subspace for dn(A, X).

We will also study the linear n-width defined by

An( A, X) := inf sup IIx - Pnxll,
Pn XEA

where Pn runs over all bounded linear operators mapping X into X
whose range has dimension n or less, and the Gel'fand n-width defined by

dn(A,X)·.=inf sup Ilxll,
x

n
xEA nX n

where the infimum is taken over all subspaces x n of X of codimension n.
In the last definition we assume that 0 EA. (The usually considered case
is when A is a convex and balanced set.) A detailed bibliography and
history of the subject can be found in the book of A. Pinkus [1].
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Let G be a domain in the complex plane. Let Hx(G) be the space of
bounded analytic functions on G with the norm

II/IIH,(G):= sup 1/(z)l.
ZEG

The analogous space of harmonic functions we denote by hx ( G). We shall
write Hx and h x if G = D := {z E C: Izi < l}. Denote by BX the closed
unit ball of the normed space X.

Let E c ( -1.n be a compact set and let L q (E. j.L) be the Lebesgue
space with positive measure j.L on E and 1 ~ q ~ iX. In Section 1 we
obtain the values of the n-widths of Bhx in Lq(E, j.L). We also find the
exact value and two different optimal spaces for dn(Bhx(if). C[ -1.1]),
where ~. is the interior of the ellipse with foci at the points ±1 and sum c
of its semiaxes.

In section 2 we find the exact values of n-widths of BHx(if,.} and

Bhx(~) in L q ([ -1,1], j.L) for dj.L(x) = dx/~, 1 ~ q < iX. To ob
tain this result we solve some minimization problem with Blashke prod
ucts. The solution of this problem allows us to construct optimal quadra
ture formulas for the classes BH>O<~J and BhX<~J and to improve the
results of Refs. [2. 3], where we proved that these formulas are optimal for
sufficiently large c.

1. n-WIDTHS OF HARMONIC FUNCTIONS IN hx

A Blashke product of degree n is a function of the form

m Z - 0:'.

B(z) = 0"n ] .
j~lI-O:'Jz

j = I •...• m. 10"1 = 1.

Denote by 91n the set of all Blashke products of degree n or less and by
.'J9~) the ones with O:'j E ( -1,0. 0" = ± 1. Let E be a compact subset of D
and j.L a positive measure on E such that j.L(E) < 00. Denote by L q :=

L q ( E, j.L) the Lebesgue space of functions on E with the usual norm II· 11'1'
It was proved by Fisher and Micchelli [4] that

We obtain a similar result for the class Bhx.
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THEOREM 1. Let E c ( - 1, 1). Then for all 1 .$ q .$ 00

dn(Bhx,L q } = An(Bhx,Lq } =dn(Bhx,Lq } = (4/1T) inf lIarctan Bll q •
BE.'lJ~)

Proof We use the scheme of proof from [4]. Let xi"'" X n be any
points in (-1,1) and let B(z) be the Blashke product with the zeros at
these points. In [3] an optimal recovery method was obtained for the
functional u(x), U E Bhx, x E (-1, 1), based on the information
u(x 1), ••• , u(x n ). It was also proved that the error of this method is equal
to (4/1T)larctan B(x)l. Thus there exist functions gi'Oo.,gn E C(E) such
that for all U E Bhx and all x E (- 1, 1)

!

U(X) - t gi(X)U(XJ!.$ ~iarctan B(x)l,
j=1 1T

where successive derivatives of U at x} through order r - 1 will appear if
some Xi coincide with order r. Hence

To obtain the reverse inequality we use the Borsuk Theorem (see, for
example, [1]). Fix points Xl!"'" Xn E (-1,1). Let Y = (Yo,"" Yn) E

sn := {y E !Rn+ I; L7~oyl = t}. Set

p(y) := inf
fEH,

f(x)=YJ.j~(). "". n

According to the classical Pick-Nevanlinna Theorem there is a unique
Blashke product B E 9Jn such that

p(y)B(xJ = Yi' j=O'Oo.,n. (3)

Since B( z) satisfies the Eqs. (3), it follows that B is real on the real axis.
Denote by /J'lnR the set of all B1ashke products B E ,wn which are real on
the real axis and by T the mapping

4
(Ty)(z) := -arctan B(z),

1T
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where B satisfies (3). The function

4
w = -arctanz

7T

159

is a conformal mapping of D on the strip IRe wi < 1. Therefore Re
Ty E Bh x for every yES". The continuity of p(y) implies that T is a
continuous and odd map of S" into L q •

Let 1 < q < 0:. Suppose that X" = span{fl' ... ,I,,} is an n-dimensional
subspace of L q • For each f E L q let c1(f), ... , c,,(f) be the coefficients of
Ii"'" fn' respectively, in the best approximation to I from Xn' The
mapping Sf:= (c1(f), ... , c,,{f» is a continuous odd mapping of L q into
IR". Thus SoT is an odd, continuous map of S" into IR". By the Borsuk
Theorem there exists a y* E S" for which c/Ty*) = 0, j = 1, ... , n.
Hence

sup inf lIu - vll q ~ inf IITy* - vll q = IITy* 11'1
uEBh,I'EXn l'EXn

4
~ - inf II arctan Bll q •

7T BE!JJn
ll

Since X n is arbitrary we have

For every a + if3 E D and x E (-1, l)

I
x-a-if3 II x-a I

1-(a-if3)x ~ I-ax'

Thus

(4)

The cases q = 1,0: are established by passing to the limit as either q '" 1
or q /' 0:.

Now consider the case of d". Let X" be any subspace of L q of
codimension n. Thus

X" = {u E L q : <fj',u) = O,j = 1, ... ,n}

for some linearly independent and continuous functionals fj on L q .
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Denote by T': sn ~ ~n the mapping

T'y := (<I;, Ty), ... , <f~, Ty»).

T' is an odd and continuous map. By the Borsuk Theorem there exists a
y* E sn for which T' y* = O. Since Ty* E Bh", we have

sup
UEBh x

<t;,u)=o,j= I, .. ,n

As X n is arbitrary we find

4
Ilull q ~ IITy* Il q ~ - inf Ilarctan Bll q

1T BEi:B:

4
= - inf Ilarctan Bll q .

1T BE.9f~1

4
dn(Bhx,L q ) ~ - inf lIarctan Bll q .

1T BE.'j)~'

The reverse inequality follows from the well-known inequality (see, for
example, [1])

and (2). The theorem is proved. I

We shall use the standard notation for the Jacobi elliptic function
w = sn(z, k), which is defined from the equation

w dt

z = iJ V(1 - t 2 )(1 - k 2 t 2 )

Besides that we shall deal with the elliptic functions

cn(z,k) := V1 - sn 2(z,k) ,

(cn(O, k) = dn(O, k) = 1) and complete elliptic integrals of the first kind
with moduli k and k' = VI - k 2

,
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From [5] it follows that for every k E (0, 1)

inf sup IB( x) I = sup IZn( x) I
BE,'lJn xE[-Ik.lkl xE[-Ik,lkl

L hnm(m+l)

= 2hn / 4 m=O x

1 + 2 L h
nm2

m~l

where h = e- rrK ' /1<.,

161

[(
2j -l ) ]z?:= {[(sn --n- - 1 K,k , j= 1,,,.,n.

As the function arctan x is monotone we have from Theorem 1

d n ( Bh,,, C[ - Ik, Ik]) = An ( Bh x , C[ - Ik, Ik])

= d n
( Bh x , C [ - Ik, Ik1)

4 r i:hnmlm+llj
= -arctan 2h n / 4 m=() ex •

7r 1 + 2 L h"",2
m= 1

To rewrite the right hand side of (5) we need the following lemma.

LEMMA 1. For all h E (0,1)

(5)

r
x j" h4m(m + I)

4 '-' 8 x (_1)'"
m-() "-arctan 2h - x = - '-'

7r 1+2m~lh4m2 7rm~()2m+l

Proof Determine k by the equation

e-rrl<.'/I<.=h.

1 + h 2\2'" + I) .
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Then for real x (see [6])

K. YU. OSIPENKO

dn ( Kx ,k) = ~ + 27T £ hm 2 cos mx.
7T 2K Km=11+hm

Hence

4K rr/2 ( Kx) 8 x (-1) m h 2m
+ I-21 dn -, k dx = 1 + - L 2 1 + h2(2m+ I)·

7T 0 7T 7T m =O m+1

It is easy to obtain that

sn( t, k)

f dn( t, k) dt = arctan ( + c.
en t, k)

(6)

Using the well-known equations from the theory of elliptic functions (see,
for example, [6])

1
sn(KI2,k) = ,; ,

1 + k'

If'
cn( K12, k) = fl+k"

1 + k'

If' = m_~_1000,-----

1 + 2 I: h
m2

m= I

we have by (6)

8 x (_1)m h 2m +1

-L
7T m~O 2m + 1 1 + h 2(2m+ I)

4 1K/2
= - dn(t,k) dt - 1

7T 0

4 sn( x, k) I

K

/
2 4(1 )= - arctan--- - 1 = - arctan - - arctan 1

7T cn( x, k) II 7T If'

, f I:h4m
<m+llj4 I - Ii1 4 m-O

= -arctan--= = -arctan 2h - x • I
7T 1 + If' 1T 1 + 2 I: h4m2

m~ I
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cf>(w):= VlZsn(2:arcsinw,k)

163

(7)

maps ?:c conformally on the unit disk D, and carries the interval [ - 1, 1] to
the interval [- VIZ, VIZ], where k satisfies

K' 4
- = -loge.
K 1T

Note that the map cf> carries the Chebyshev points

(8)

2j - 1
x() = cos--- 1T

J 2n'
j = 1, ... , n, (9)

to zy. We obtain the following corollary by using this map, (5) and
Lemma 1.

COROLLARY 1. For all c > 1

d,,( Bh,,(?:J, C[ -1,1)) = A,,( Bh~(~.), c[ - 1,1))

= d"( Bh~( ~.), c[ -1,1))

8 x (_1)111 C-(2111+1)"

= 1T E 2m + 1 1 + c- 2(2m+l)/1'
m~O

Denote by A()(g;) the class of functions f which are amilytic in g;, real
on the real axis and satisfy

IRef( z) I ~ 1,

It was proved by N. I. Akhiezer [7] that

Z E g;.

EAA o03;·)):= sup inf Ilf - pllq-l.ll
fEAII(i\.l pE::!J'"

8 x (_1)111 C-(2111+ I)"

= 1T L 2m + 1 1 + C- 2(2111+ 1)/1' (10)
m~O

where 9'" _ 1 is the set of all polynomials of degree n - 1 or less.
It is easy to show that the restrictions on the real axis of A()(S';J and

Bh~(g;) coincide. Thus Eg. (10) is valid for Bh~Uf) and the space 9'/1 _ I is
optimal subspace for d/Bh~(g;),C[ -1,1]). By proving Theorem 1 we see

640/82/1-12
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that the space

K. YU. OSIPENKO

X n := span{gl(c/>(w)), ... ,g,,(c/>(w))},

where the functions g l' ... , gn are determined by the points zY, is also an
optimal subspace. Akhiezer's result was brought to the author's attention
by to V. M. Tikhomirov. He also conjectured that there is a sequence of
optimal subspaces, like in the case of smooth functions (see [8]).

2. EXACT VALUES OF n-WIDTHS IN L q AND OPTIMAL

QUADRATURE FORMULAS

We first formulate a generalization of one result obtained by A. Pinkus
[9] (see also [1, p. 174]). Let h(t) be a piecewise continuous, 27T-periodic
function. Denote by Se(h) the number of sign changes of h. For a real,
continuous, 27T-periodic function k set

1 121T
(k * h)(x) := - k(x - t)h(t) dt.

27T () .

The kernel k is nondegenerate cyclic variation diminishing (NCVD) if
S,.(k * h) ~ Se(h) for all h, and

dimspan{k(x 1 - ·), ... ,k(xn - .)} = n

for every choice of 0 ~ x I < ... < x" < 27T and all n. The kernel k is said
to be strictly sign consistent of order 2/ + 1 (SSC 21 + I) if

whenever 0 ~ XI < ... < X ZI + I < 27T, 0 ~ YI < ... < YZI+ I < 27T, and U'

= 1 or -1.
Set

For each {E A Zm we define

j = 1, ... , 2m + 1,

where {o := 0, {Zm+ I := 27T. Denote by hm(t) the function h~ for {j =

(j - I)7T/m, j = 1, ... , 2m.
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THEOREM 2. Let k be an NCVD kernel and cp a nonnegative function
defined on [0, C], where

1 J27TC := - Ik ( t ) Idt.
21T 0

Suppose that cp' is an nonnegative, continuous, and strictly increasing func
tion. Then

Furthennore, if k is SSC2/ + I' 1= 0,1, , n, and the infimum is attained by
CEA 2n , then tj : I - tt = 1T/n, j = 1, , 2n - 1.

This theorem was proved by A. Pinkus for cp(x) = x q , 1 :c;: q < x. The
general case is proven in a similar way. To count sign changes we only
need to use the equation

sign (a + b) = sign( cp'(lal)sign a + cp'(lbl)sign b)

instead of

sign(a + b) = sign(lalq-1sign a + Iblq-'sign b), 1< q < x.

Set D H := {z E C: 11m zi < H}. Denote by All the class of all functions
analytic in D H , real and 21T-periodic on the real axis which satisfy

IRef(z)1 :c;: I, Z E DH •

Each function 1 E A II has the representation

1 J27TI(z) = - KH(z - t) Ref(t + iH) dt,
21T 0

where

x cos jz
KH (z)=1+2I:--.

j~ I cos]H

and Kif is NCVD on [0, 21T) (see [ID. Moreover, it was proved by W. Forst
[10] that KII is SSC2/ + I for all 1= 0, I, ....

By Theorem 2 with k = Kif we solve some extremal problems which
allow us to obtain exact values of n-widths and to construct optimal
quadratures for BH-xlg;.> and Bh-xlg;).
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For k E (0, 1) set
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1T dz
dllk(z) := 2K J(k - z2)(1 - kz2)

THEOREM 3. Let cp be a function defined on [0,1] which satisfies the
assumptions of Theorem 2. Then for all k E (0,1)

where

A = 4h"j2

L h"m(m + I)

m~O

( 12)

and A is the complete elliptic integral of the first kind with modulus A.
Moreover, the functions ± Z" are the only functions for which the infimum is
attained.

Proof Let B E .'iJ~). Set

From the properties of the elliptic function sn( x, k) it follows that f E A H,

where H = 1TK' /(4K). For z = e iH we have

where c j E IR, if = 1 or - 1. Thus the function Re B(e iH
) has at most 2n
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zeros in (0, 21T). As t runs from 0 to 21T the point

z = vk sn ( 2: (t + iH), k)

167

makes one rotation around the unit circle. Since for all Izi = I and

z *' ±i

Re ( : arctan z) = sign Re z,

we have for almost all t E: [0, 21T ]

Re f( I + iH) = sign Re B ( vk sn ( 2: (I + iH), k ) ) . ( 13)

Consequently there exists a ~ E: AZII for which

By using the first fundamental transformation of degree n (see [6]) we can
find

{

m~ (2nA )
( (

2K )) _ (- 1) vA sn ----:;;- t + A, A ,

Z" vk sn t, k - (2 11T m nJ
( - I) VAsn ----:;;- t, A) ,

where A is determined by the equation

A' K'
- =n-
,1 K

n = 2m,

fl = 2m + I,

(A' is the complete elliptic integral of the first kind with modulus
A' = VI - A2

). From the standard equation

L h;"(m + I)

VA=2h:/ 4 m=1I ex

I + 2 I: h'(
m= I

111' J.\
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in the theory of elliptic functions, we obtain (12). Set

Let n = 2m + 1. Then from the equation

(I + A)sn(w, A)
Re sn( w + i A'/2, A) = --;:--;:---

I + A2 sn 2 (w, A) ,

and (13) it follows

m ( 2n J\. )Re fn(t + iH) = (-1) sign sn ---:;;-t, A .

Hence

It can be proved similarly that for n = 2m

Thus

Now from Theorem 2 we have

inf 127Tcp(~arctanIB(lksn(2Kt'k)))) dt
BE.9fl~1 (} 17" 17"
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In view of the equation sn(2K - w, k) = sn(w, k) we will have

inf 17T/2 1f!(~arctanIB(lfsn(2K t ,k))!) dt
BE.'jJ~1 -7T/2 7T 7T

17T/2
= 1f!(I(KF/*hn)(t)l)dt

--7T/2

7Tt (4 )= A ~)' If! 7T arctan( fA sn( z, A») dz.

Making the change of variables

169

(15)

in the first integral and t = sn( z, A) in the last one, we obtain (11).
If the infimum in (I 1) is attained by any B* E $,:) then from Theorem 2

there exists an Q' E [0, 1T/n) and (J' = 1 or -1 for which

: arctan B* ( Ifsn ( 2: t , k )) = (J' ( K 1/ * h II )( t + Q')

4 [ ( 2n A )]= (J' 7T arctan vAsn --:;;- (t + Q'), A .

Thus

In view of the formula for sn(u + w, A) we have

B* ( Ifsn ( 2: t, k ) )

asn(~t, A) + b cn(~t, A)dn(~t, A)

1- c sn 2 ( 2:At, A)

where

(
2n 11 )

h = u/Asn ~Q', A

( 16)
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(the numbers a and c are irrelevant), Let n = 2m + 1. If we make the
change of variable (15), the left hand side of (16) and sn ((2n AI7T)t, ,\)
become rational functions. On the other hand, it is not difficult to show
that

(
2n A ) (2nA )cn ~t,,\ dn ~t,,\

is not a rational function (as a function of z). Therefore b = 0 and
consequently Q' = O. This means that B* = Zn or -Zn' The case n = 2m
can be considered similarly. The theorem is proved. I

Set

I t q dt
I 0(A) := 1 '

q 0 y(1 - t 2 )(1 - ,\2(2)

I arctan q (f,\t) d(
I 1(A) := 1 ---,====::====~::=::=-

q 0 "';(1 - (2)(1 - ,\2 t 2) ,

I arctan( f,\() q dt
I i,\) := 1---;======

q 0 "';(1 - t 2 )(1 - ,\2(2)

Considering in Theorem 3 the functions

arctan ( tanq
; x), 1 :5: q < x,

as lp, we have

COROLLARY 2. For all k E (0,1) and 1 :5: q < 00

f # q 7T
inf arctan/B(z)1 dvk(z) = -lq2(A).

B E .'$~' - /k ;\

Furthermore, in el'ery case the infimum is attained only by ± Zn'
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Now we can prove the following result.

THEOREM 4. Let Lq:= L/[ -1,1], J-L), dJ-L(x) = dxl h - x 2
• For all

1 S; q < 00 and c > 1

dn ( Bhx ( W. ), L q )

= An(Bhx(~c), L q ) = dn(Bhx(~c), L q )

_r( q : 1) I/q

=:(:JqIP)f/q=:hr (q ) c-
n

+O(c-
5n

),

r "2 + 1

where A is the complete elliptic integral of the first kind with modulus

r
x 1

2

L c- 4nm(m+l)

A = 4c- 2n m~() x

1 + 2 L c- 4nm
'

m=l

( 17)

Proof Let z = 4>( w) be a conformal mapping of g;. on the unit disk D
determined by (7). It is easy to show that

Therefore by the mapping 4>, the original problem reduces to one
of finding the exact values of the n-widths of BHx and Bhx 10

L/[ - {k, {kJ, ~'k). From (I) we have
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It follows from (4) that we can change .f9n by .f9~J in the last equation.
Thus by Corollary 2

For the class Bhcyc(fffc) from Theorem 1 and Corollary 2 we obtain

The asymptotic equations follow from (17) and the well-known equations

A = 7T(1 + 2 t h m2 )2,
2 m~ I

'IT.-'\'

h - - -4n=e ,,1 =c .

The theorem is proved. I
The n-widths of periodic functions, which are represented as a convolu

tion with some kernel k E NCVD, was studied by A. Pinkus [9] (see also
[1 D. In particular, it follows from [9], that for all 1 s q s CXJ

where 11·ll q is the usual norm in the space Lq := Lq[O, 27T]. Since the
function K h * hn is found in direct form (see (14)) we can calculate the
exact values of these n-widths.

THEOREM 5. For all 1 s q < 00
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where

A = 4e _2Hn l-m_~_oe_-.,.,-~I/_n_/II(_/II_+1_) ]2

1 + 2 1: e- 4Hnm
'

m=l

For q = 00 we have from (14) and (18)

Now from Lemma 1 and (17)

d2n ( A H , Lee) = A2n ( A H , Lee) = d 2n
( All' Lx)

4 cc (_1)/11 1

= 7T m~() 2m + 1 cosh[(2m + I)Hn] .

173

These equations were previously calculated by V. M. Tikhomirov [11] (the
complete proof was given by W. Forst [10]).

Let us consider some applications of Theorem 3 to optimal quadrature
formulas. We are interested in the problem of approximate calculation of
the integral

[

I dx
If:= f(x) "

-I ~

where fEW = BHJ~) or Bhx(fl:;), in terms of the values of f and its
derivatives at a system of knots. Denote by

(
xl, ... ,xn )

T :=
(l Q'], ... , an '

a system of distinct knots x I' ... , X n E [ - I, 1] with multiplicities a I' ... , a".
The error of the best quadrature formula for a given system Tn is the

number

If f E BhJff,;) we mean by rill) the partial derivative i/ lll fli/x lll
• A
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quadrature formula is said to be best for a given system T" if it realizes the
infimum.

Set

e(a,W):= inf e(T",W).
- 1 $.x\ < ... <X n 5. I

If the infimum is attained at the points - 1 ::-::; X\I < .,. < x~ ::-::; 1, then the
best quadrature formula for this system of points, with multiplicities
a = (0'1"'" a,,), is said to be optimal for the given a. The points
x\\ ... ,x~ are also called optimal.

It was proved in [2, 3] that

e(a,BH,./fff'c» = inf Ilk IB(z)ldvk(Z),
-/k<z,<···<z.</k -/k

e(a, Bh.xCg;.» = ~ inf til: arctanIB(z)ldvk(Z),
1T-Ik<z,<···<z.<1k -/k

where

(here the brackets denote the integral part) and k is determined by (8).
Using Corollary 2 and the results of [2, 3] we obtain the following theorem.

THEOREM 6. Let q be an even positive integer. Then for all c > 1:

(j) for all q - 1 ::-::; a} ::-::; q

1T (q-l)1I
e(a BH(fff'.») = _Aq/2/ (A) = 2q / 21T "c- q" + O(C-(q+4)")

, "" ( J\ qU (q /2)! '

e(a Bh (fff'») = ~/ (A) = 2'1/ 2 + 2 (q - 1)!! c- q" + O(C-<q+4)")
, "" c J\ '1

2 (q /2) ! '

where It is detennined by (t7), and the unique system of optimal knots is the
Chebyshev system (9);

(ij) for a} ::-::; 2 the quadrature fonnulas

1 - .1,,( c) 11 ( 2j - I )
::::: 1T L f COS--1T ,

n i~ I 2n

1-8,,(c) 11 ( 2j-1 )
::::: 1T L f COS--1T ,

n j~ \ 2n



EXACT VALUES OF n-WIDTHS

where

A2

Lln(c) .- A I4o (A)

A2 t 4 dt
onCc):= 2-fl---r=========

A () (1 + A2 t 4 )..j(1 - t 2
)( 1 - A2t 2

)
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are optimal for the classes BH,lf5;J and Bh.}f5;'), respectively.
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